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Objectives: Neuropsychological tests are an important basis for the memory
impairment diagnosis in Alzheimer’s disease (AD). However, multiple memory tests might
be conflicting within-subjects and lead to uncertain diagnoses in some cases. This study
proposed a framework to diagnose the uncertain cases of memory impairment.

Methods: We collected 2,386 samples including AD, mild cognitive impairment (MCI),
and cognitive normal (CN) using 18F-fluorodeoxyglucose positron emission tomography
(FDG-PET) and three different neuropsychological tests (Mini-Mental State Examination,
Alzheimer’s Disease Assessment Scale-Cognitive Subscale, and Clinical Dementia
Rating) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). A deep learning (DL)
framework using FDG-PET was proposed to diagnose uncertain memory impairment
cases that were conflicting between tests. Subsequent ANOVA, chi-squared, and t-test
were used to explain the potential causes of uncertain cases.

Results: For certain cases in the testing set, the proposed DL framework outperformed
other methods with 95.65% accuracy. For the uncertain cases, its positive diagnoses
had a significant (p < 0.001) worse decline in memory function than negative diagnoses
in a longitudinal study of 40 months on average. In the memory-impaired group,
uncertain cases were mainly explained by an AD metabolism pattern but mild in extent
(p < 0.05). In the healthy group, uncertain cases were mainly explained by a non-
energetic mental state (p < 0.001) measured using a global deterioration scale (GDS),
with a significant depression-related metabolism pattern detected (p < 0.05).

Conclusion: A DL framework for diagnosing uncertain cases of memory impairment is
proposed. Proved by longitudinal tracing of its diagnoses, it showed clinical validity and
had application potential. Its valid diagnoses also provided evidence and explanation of
uncertain cases based on the neurodegeneration and depression mental state.
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INTRODUCTION

Neuropsychological tests, such as Mini-Mental State
Examination (MMSE) (Folstein et al., 1975), Alzheimer’s Disease
Assessment Scale-Cognitive Subscale (ADAS-Cog) (Mohs et al.,
1983), and Clinical Dementia Rating (CDR) (Morris, 1993), are
common methods that evaluate cognitive performance and also
play a key role in screening for dementia (Creavin et al., 2016).
Among the different aspects of cognition, memory impairment is
considered the most primary and common cognitive impairment
both in the progress of mild cognitive impairment (MCI) and
in Alzheimer’s disease (AD) (Gauthier et al., 2006; Wilson et al.,
2011; Scheltens et al., 2016). However, doubt on their reliability
and validity exists (Rikkert et al., 2011; Spencer et al., 2013; Jiang
et al., 2020), and the conflict between test results within subjects
can be severe, especially in uncertain dementia cases (Perneczky
et al., 2006; Trzepacz et al., 2015). This can lead to poor and
uncertain outcomes of dementia diagnoses (Matthews et al.,
2008), which can be unstable compared with neuropathologic
results from MRI or PET scans (Shim et al., 2013).

Moreover, the cause of these uncertain cases remains unclear.
Major explanations include the lack of sensitivity of these
tests (Wind et al., 1997; De Jager et al., 2002; Perneczky
et al., 2006), especially in diagnosing between cognitive normal
(CN) and MCI (Mitchell, 2009), and different evaluation
methods and focus between tests (Trzepacz et al., 2015;
Bergeron et al., 2017). However, few studies focused on the
neurological state and studied the brain images of these
subjects to get a convincing explanation of uncertain cases.
A more stable and reliable diagnosis method is needed for
uncertain cases, and more explanation and evidence are also
needed to help understand and overcome these uncertain cases
(Gaugler et al., 2013).

Inspired by these works, to explore a diagnosing method and
an explanation with evidence for the uncertain cases in memory
impairment related to AD, we tried to diagnose the uncertain
cases using a designed deep learning (DL) framework on 18F-
fluorodeoxyglucose positron emission tomography (FDG-PET)
using a large set of samples, verify its validity using longitudinal
memory function progress, and figure out neurological evidence
and cause using groupwise statistical analyses.

RELATED WORKS

In the field of computer-aided diagnosis (CAD), more
researchers are focusing on analyzing neuroimages using
the DL algorithm (LeCun et al., 2015). It abstractly extracts
high-dimensional features along with a powerful classification
ability and does not rely on expert-designed features such
as traditional methods (e.g., linear regression and support
vector machine). For diagnosing AD and related pathology, the
neurodegeneration revealed by FDG-PET hypometabolism
and atrophy on MRI are both defined as multimodal
biomarkers (Jack et al., 2018; Zhang et al., 2020; Wang
et al., 2021). The diagnosis (Ortiz et al., 2016) or prediction
(Shen et al., 2019; Spasov et al., 2019) based on deep neural

networks was proposed and showed high accuracy with
fast implementation.

However, most CAD researches dealt with certain labeled
samples (Shen et al., 2017) before training or testing the
performance of models, but the classification potential
of DL on judging the uncertain and unlabeled samples
should be more exploited. As previous works (Hosokawa
et al., 2015; Son et al., 2020) started to use the patch-based
2D convolutional neural network (CNN) to distinguish
uncertain β-amyloid PET and achieved the level for clinical
usage, this network implementation might not be suitable
for detecting lesions in the images of uncertain memory-
impaired cases because of the unknown lesion location for
making patches and potential loss of texture information
between 2D layers.

Inspired by these studies, we proposed a semi-supervised
learning framework based on 3D CNN (Du et al., 2015) that
extracts discriminative features using certain impaired samples
and provides guiding diagnoses for the uncertain impaired
samples. Moreover, to optimize the network for PET-FDG-based
diagnosis, several important network designs were implemented.
First, we replaced the original stacked fully connected layer with
a 1 × 1 × 1 convolution layer, inspired by the former study
(Lin et al., 2015). In practice, this largely simplified the network
while still keeping high performance and was able to train large
3D PET images sized 96 × 96 × 96 and, therefore, better
preserving the texture information between axial layers in the
PET image. Moreover, from a biological and pathological scope,
we also gave evidence and explanation of uncertain cases based
on neurodegeneration and depression mental state.

MATERIALS AND METHODS

Study Population
All data used were obtained from the open-source project the
Alzheimer’s Disease Neuroimaging Initiative (ADNI),1 which is
the largest ongoing project for the analysis of AD, covering all
subphases of ADNI project from September 2006 to October
2019 (ADNI1, ADNIGO, ADNI2, and ADNI3). All available
FDG-PET and corresponding MRI images up to April 2020 were
collected to ensure a large data amount. One case of data included
FDG-PET/CT scanning for glucose metabolism, T1-weighted
magnetization prepared rapid gradient-echo (MPRAGE) MRI,
memory assessment in three major neuropsychological tests,
namely, MMSE, ADAS-Cog, and CDR, and global deterioration
scale (GDS, with 15 questions detailed in Supplementary
Table 1) for depression mental state. All scale tests were carried
out within 6 months to FDG-PET. Moreover, we expanded our
baseline data by searching for all available longitudinal memory
assessments that baseline subjects went through. The longitudinal
time lengths are limited to 6–96 months after baseline, for a
sufficient sample amount. These changes in the longitudinal
study were counted every 6 months.

1http://adni.loni.usc.edu/
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Neuropsychological Tests and Grouping
Criteria
Three major neuropsychological tests including MMSE, ADAS-
Cog, and CDR were carried out within 6 months and the images
were collected for each FDG-PET scan. We did not choose
other popular tests, such as the Montreal Cognitive Assessment
(MoCA), because these were less applied in ADNI set. These
neuropsychological tests are comprehensive evaluations of
different cognitive functions, and memory is the most significant
and primary one. The delayed word recall test is applied in the
same way both in MMSE and ADAS-Cog. To make different tests
more comparable, this study concentrated on the delayed word
recall tests of MMSE (MMSE-Recall) and ADAS-Cog (ADAS-
Cog-Recall), and CDR score of memory (CDR-Memory). In
detail, MMSE-Recall was scored 0–3 based on how many words of
3 were recalled, ADAS-Cog-Recall was scored 0–30 based on how
many words of 30 were recalled, and CDR-Memory was scored 0,
0.5, 1, 2, and 3 as healthy, suspected, mild, moderate, and severe
memory impairment.

Each FDG-PET image was grouped based on whether
the memory cognitive impairment was certainly impaired or
healthy in the three neuropsychological tests. First, if MMSE-
Recall≤ 1, ADAS-Cog-Recall < 12 (defined by “mean− standard
deviation”), and CDR-Memory ≥ 1, the case will be grouped
into “certain impaired.” In reverse, if MMSE-Recall > 1, ADAS-
Cog-Recall > 23 (defined by “mean + standard deviation”), and
CDR-Memory = 0, the case will be grouped into “certain healthy.”
The rest of the cases that the three tests are conflicting with each
other will be grouped as “uncertain cases” and diagnosed using
the DL framework proposed in this study. The whole grouping is
shown in Figure 1A.

Image Acquisition and Preprocessing
All raw FDG-PET and MRI images were acquired following the
standardized ADNI protocols (Jack et al., 2008; Jagust et al.,
2010) and processed following the same criterion: PET images
were first registered to corresponding T1-weighted MPRAGE
or inversion recovery-spoiled-gradient recalled echo (IR-FSPGR)
MRI native space using the normalized mutual information
method, then spatially normalized to the Montreal Neurological
Institute (MNI) template using warping parameters derived from
the individual MRI normalization performed previously via
the routine of unified segmentation algorithm (Ashburner and
Friston, 2005). Finally, images were spatially smoothed using the
Gaussian kernel of 8 mm full width at half maximum to improve
the signal to noise ratio and overlapped using a customized
binary mask for the whole brain, all completed using Statistical
Parametric Mapping 12 (SPM12).2 Voxel standard uptake value
(SUV) was divided by mean uptake of the whole pons (Whitwell
et al., 2018) to generate a standard uptake value ratio (SUVr).
Because data used in this study are from a large multisite project
ADNI, including a total of 59 sites, partial volume correction
(Mullergartner et al., 1992) was not included to avoid adding
unnecessary image variances across sites (Klunk et al., 2015) and

2www.fil.ion.ucl.ac.uk/spm

weaken the generality of multisite data. Full information about
the acquisition of data in the ADNI Laboratory of Neuroimaging
(LONI) database is provided at http://adni.loni.usc.edu/data-
samples/data-types/.

Deep Learning Classification Framework
After grouping certain and uncertain cases, the corresponding
FDG-PET images were used to diagnose uncertain cases using
the DL framework. First, for evaluating the classification
performance of each method, all images (n = 645) in a certain
group were evaluated using fivefold cross-validation. Then, all
FDG-PET images in the uncertain group were placed into the
trained DL framework, which was diagnosed to be memory-
impaired/healthy. The whole flowchart is shown in Figure 1B.

A specially designed convolution neural network (CNN)
model was used to classify impaired/healthy from the FDG-PET
image of each case. The structure of the model is shown in
Figure 1C. We used a 3D convolution layer of size 3 × 3 × 3
with stride 1, followed by a batch normalization layer and a
rectified linear unit (ReLU) activation layer for non-linearity.
The downsampling was performed using 3D max-pooling of size
2 × 2 × 2. The number of filters was multiplied from 16 to
128 as the downsampling goes. Finally, a convolution process
with 1 × 1 × 1 3D convolution was performed to summarize
the high-dimensional features and ended with a dense layer with
sigmoid activation as classification output. Using 3D convolution
sized 1 replacing stacked fully connected layers reduced network
parameters that need training from 230 million to 882,000. The
model was trained using Adam (Kingma, 2015) optimizer with
the learning rate of 0.001 and loss of binary cross-entropy, using
a mini-batch size of 4 considering both the efficiency and RAM
size. To decrease overfitting, the training process used early
stopping tuning by stopping when the training loss did not
significantly decline by 0.01 within 10 epochs. The whole model
was accomplished using Keras 2.1.23 framework on TensorFlow
1.14.04 backend, with a GPU of NVDIA RTX2080Ti5.

Evaluation of Performance
First, the classification performance in certain cases was tested
using fivefold cross-validation. For each iteration of cross-
validation, 60% of images were used as a training set, 20% of
images were used as a testing set, and 20% of images were
used as a validation set. To compare the performance of the
proposed 3D-CNN-DL framework, we also used three layers of
multilayer perceptron, 3D ResNet implemented by Hara et al.
(2017), C-support vector machine (SVM), Nu-SVM (with the
linear or radial kernel using LIBSVM toolbox6) (Chang and
Lin, 2011), linear regression, and logistic regression for the
classification task. The common parameters for classification,
namely, accuracy, precision, sensitivity, specificity, F1 score, and
area under the curve (AUC) of receiver operating characteristic
curve (ROC), were used.

3https://keras.io/
4https://tensorflow.google.cn/
5https://www.nvidia.cn/geforce/20-series/
6https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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FIGURE 1 | (A) Flowchart of data grouping criteria, using memory scores of these tests. (B) Flowchart of this research, including grouping, training, and utilizing of
the DL model. The uncertain samples were diagnosed using this frame in the end. (C) The concrete structure of the designed three-dimensional CNN model. MMSE,
Mini-Mental State Examination; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; CDR, Clinical Dementia Rating.

Second, to evaluate the accuracy of the DL framework’s
diagnoses on uncertain cases, we used the memory testing scores
in the progress of the longitudinal study of each subject, with
40 months on average. Because the longitudinal progress of
memory impairment is a key concern of AD and also a reliable
marker indicating whether true impaired or healthy state at
baseline, a nice diagnosis framework should tell apart the subjects
between memory impairment in progress and healthy memory
function, using baseline FDG-PET as inputs.

Moreover, to interpret the high-dimensional features of the
learned DL framework, two unsupervised dimension reduction
methods, namely principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE) (van der
Maaten and Hinton, 2008), were applied to topologically
represent and visualize the features in the last flatten layer of
the DL framework to be a 2D scatter plot, where similar abstract
feature vectors are spatially close to each other as scatters.

Time complexity evaluation was performed for each method.
The DL algorithms were evaluated using a special metric named

floating-point operations per second (FLOP) because the big
“O” is not suitable for too many free variables in the DL
networks. Other traditional methods were evaluated using the
big “O” notation.

Statistical Analysis
The t-test was applied between both voxel-wise and region
of interests (ROI)-wise SUVr, and the multiple comparison
correction was applied by family-wise error (FWE) or false
discovery rate (FDR) depending on the extent of significance,
with cluster extent > 5. The age, gender, education level, and
ApoE gene types were taken into account as covariates because
they could reasonably influence the neurodegeneration in FDG-
PET. The t-test was also applied to test scores between groups.

Two-way ANOVA was applied to judge whether the
variance of total GDS scores was significantly contributed
by certain/uncertain, impaired/healthy, and the interaction
between these two factors. Because of the different sample sizes
between groups, groups will be randomly sampled to equal the
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smallest size 294 by applying two-way ANOVA. Considering the
randomness of sampling, we repeated the random sampling and
applied ANOVA 100 times, and recorded the mean p-value to
ensure a credible significance.

The chi-squared test was applied to judge the significant ratio
difference between groups, such as gender, ApoE, and each single
GDS test with binary value in comparisons. P-values in GDS were
strictly corrected by FWE because 15 tests and a total score were
tested and listed.

Linear regression was applied to evaluate the longitudinal
tendency of neuropsychological test scores, using months after
baseline as an independent variable and scores as a dependent
variable. The 95% CI of the fitted result was shown.

All statistical tests were performed using the statistics and
machine learning toolbox in MATLAB R20197.

RESULTS

Demographic Information
In total, 2,386 samples were obtained from 1,247 subjects and
tested using FDG-PET and neuropsychological tests. These
samples included 332 subjects with AD, 1,347 subjects with MCI,
and 707 subjects with CN. According to the grouping criteria of
memory test performance, 312 subjects were grouped as “certain
impaired” cases, 333 subjects were grouped as “certain healthy”
cases, and 1,741 subjects were grouped as uncertain cases. All
demographic information can be found in Table 1, which are
grouped into certain or uncertain cases.

The Proposed Deep Learning Framework
Outperformed Others in Classifying
Certain Cases
Nine different models were trained on the FDG-PET images
of certain cases with fivefold cross-validation. After evaluating
the binary classification performance, the DL framework
has an obvious comprehensive advantage over other models,
separately in accuracy (95.90%), precision (97.01%), sensitivity
(93.59%), F1 score (95.27%), and AUC (98.15%) (Table 2).
The timing-based evaluation was also performed and is
recorded in Table 2. For three DL-based methods, the
training was all within 40 epochs and 15 min. FLOP
was also recorded for network time complexity. For other
traditional methods, a big “O” notation of time complexity
was estimated.

The Proposed Deep Learning Framework
Diagnosing Uncertain Cases and Proved
Clinical Validity Using the Longitudinal
Study
To judge whether the diagnoses classified using the DL
framework in the uncertain cases are reliable, we chose to track
the longitudinal memory function progress of each uncertain case
and regarded it as an evaluation criterion for the diagnoses with
the baseline FDG-PET.
7https://www.mathworks.com/

TABLE 1 | Demographic information of all cases.

Certain
impaired

Certain
healthy

Uncertain p

N 312 333 1,741

AD/MCI/CN 158/77/77 29/45/259 315/816/610 <0.001

Age (years) 75.68 (7.26) 74.58 (5.87) 75.65 (7.46) 0.03

Sex (F) 41.35% 52.25% 38.37% <0.001

Education (years) 6.50 (3.40) 6.75 (3.39) 6.57 (3.42) 0.61

APOE ε4+# 68.27% 21.69% 45.97% <0.001

MMSE-recall 0.19 (0.39) 2.87 (0.33) 2.02 (1.09) <0.001

ADAS-Cog-Recall 8.49 (2.45) 25.02
(1.84)

17.54 (3.92) <0.001

CDR 1.00 (0.49) 0.00 (0.03) 0.43 (0.28) <0.001

CDR-memory 1.36 (0.51) 0.00 (0.00) 0.49 (0.35) <0.001

GDS## 1.48 (1.54) 1.71 (1.94) 1.54 (1.84) 0.08

GDS-energy+## 80.27% 76.44% 69.55% <0.001

#APOE information of six samples were lacking in the dataset and not counted.
##85 GDS information were lacking and not counted. APOE ε4, apolipoprotein
ε4; MMSE, Mini-Mental State Examination; ADAS-Cog, Alzheimer’s Disease
Assessment Scale-Cognitive Subscale; CDR, Clinical Dementia Rating; GDS,
Global Deterioration Scale.

The total longitudinal cases are 8,870 for ADAS-Cog-Recall,
8,865 for MMSE-Recall, 9,323 for CDR-Memory, and the
cases that three tests completed at the same time are 6,912.
The longitudinal time lengths are 40.38 ± 29.32 months for
MMSE-Recall, 40.91 ± 29.68 months for ADAS-Cog-Recall, and
42.07± 30.40 months for CDR-Memory.

After the DL framework had diagnosed these uncertain
cases, as for the longitudinal changes (Figure 2A), impaired
diagnoses showed significantly more memory decline than
healthy diagnoses in all 6 years for CDR-Memory and mainly
in the first 5 years for the other two tests. Longitudinal cases
more than 5 years are rare in amount, which might explain
the insignificance after 5 years. The linear regression results
also agreed with this difference (Figure 2B). For MMSE-Recall
and ADAS-Cog-Recall, three groups except certain impaired
group remain declining as the ages grow, the uncertain impaired
group shows severe memory function in the long term (mean
MMSE-Recall = 0.35 and mean ADAS-Cog-Recall = 13.35, after
96 months), which is close to certain impaired group (mean
MMSE-Recall = 0.14 and mean ADAS-Cog-Recall = 10.25, after
96 months), while the uncertain healthy group shows a healthy
state in the long term (mean MMSE-Recall = 1.46 and mean
ADAS-Cog-Recall = 17.47, after 96 months), which is close to
certain healthy group (mean MMSE-Recall = 2.03 and mean
ADAS-Cog-Recall = 22.07, after 96 months). For CDR-Memory,
the uncertain impaired group (95% confidence slope = 0.0046
to 0.0076 per month) declines nearly four times faster than
the uncertain healthy group (95% confidence slope = 0.0011 to
0.0020 per month), while it shows separately different prognosis
in the long term.

Two Different Metabolism Patterns of
Uncertain Cases
Owing to the DL diagnoses for uncertain cases, we could
then manage to analyze the glucose metabolism state between
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TABLE 2 | Classification performance of different models in the testing set, by fivefold cross-validation.

Algorithms Accuracy (%) Precision (%) Sensitivity (recall) (%) Specificity (%) F1 score (%) AUC (%) Time complexity#

Our proposed network 95.50 97.01 93.59 97.30 95.27 98.15 FLOP = 181 G

MLP 92.25 93.09 90.71 93.69 91.88 97.14 FLOP = 0.5 G

3D ResNet 93.18 96.53 89.10 97.00 92.67 97.59 FLOP = 93.9 G

C-SVM (linear kernel) 93.80 94.16 92.95 94.59 93.55 97.81 O(dn)

C-SVM (radial kernel) 84.81 83.23 85.90 83.78 84.54 92.31 O(dn2)

Nu-SVM (linear kernel) 91.16 91.53 90.06 92.19 90.79 96.05 O(dn)

Nu-SVM (radial kernel) 90.85 90.94 90.06 91.59 90.50 95.99 O(dn2)

Linear regression 92.56 93.42 91.03 93.99 92.21 97.65 O(dn)

logistic regression 91.16 89.97 91.99 90.39 90.97 96.30 O(dn2)

DL, deep learning; MLP, multilayer perceptron; SVM, support vector machine; AUC, area under the curve; FLOP, floating-point operations per second.

FIGURE 2 | (A) Significantly different longitudinal changes of three neuropsychological tests (MMSE, ADAS, and CDR) between impaired and healthy uncertain
cases diagnosed using the DL framework, calculated for every 6 months from 6 to 96 months. ***p < 0.001, **p < 0.01, all family-wise error (FWE) corrected.
(B) Linear regression of longitudinal three neuropsychological tests for all four groups including the uncertain diagnoses, from 6 to 96 months. The 95% CIs were
shown in gray color.

four groups based on the labels, namely, certain/uncertain
and impaired/healthy. The t-test results are shown in
Figure 3A, and the t-test map view in slices is found in
Supplementary Figure 2. In the first row, hypometabolism
between impaired and healthy cases covers major regions
among the cerebrum, including typical temporoparietal lobe
and posterior cingulate, frontal lobe, limbic system, and
subcutaneous nuclei, with less region of hypermetabolism in
cerebellum regions 4 and 5.

However, in the second row of Figure 3A, two different
metabolism patterns are associated with uncertain cases.
For certain impaired vs. uncertain impaired cases, the
hypometabolism concentrates on the binary medial
frontal orbital cortex, temporoparietal lobe, hippocampus,
parahippocampus, precuneus, and angular and middle posterior
cingulate. For certain healthy vs. uncertain healthy cases, the
hypometabolism concentrates only on the binary medial frontal
orbital lobe, anterior cingulate, insula, hippocampus, and
parahippocampus, with hypermetabolism in right cerebellum

crus1 and cerebellum region 6. The significant differences in ROI
are also associated with these different patterns (Figure 3B).

The t-SNE unsupervised topological representation of high-
dimensional features extracted using the DL framework is shown
in Figure 3C. It is worth noting that four groups showed
continuous feature states from the order of certain impaired,
uncertain impaired, uncertain healthy, and certain healthy, with
clearly separate distributions between uncertain impaired and
uncertain healthy cases. More importantly, the overlap between
impaired cases was less than the overlap between healthy cases,
while the areas of certain and uncertain healthy cases were much
similar, meaning more diverse high-dimensional features of
FDG-PET existed between certain and uncertain impaired cases.

Mental State Features in Uncertain
Cases
To explore the latent relationships and interactions between
mental state and uncertain cases, the chi-squared test for every
single question of GDS and two-way ANOVA was applied on
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FIGURE 3 | (A) The t-test maps of FDG-PET SUVr between four groups are shown among cerebrum, and slice views are found in Supplementary Figure 2. Only
results of FWE corrected p < 0.05 were shown. The color bar represents the t value. (B) Comparison of the SUVr value of four groups in five typical ROIs. It is worth
noting that the insula and anterior cingulate are significantly different between healthy groups, and the inferior temporal lobe and precuneus are significantly different
between impaired groups. ***p < 0.001, FWE-corrected. (C) Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) clustering
for four groups of last flatten layer in the DL framework, showing separate distributions between diagnosed impaired and healthy cases using the DL framework.
SUVr, standard uptake value ratio.
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the total GDS score, with two factors (impaired/healthy and
certain/uncertain cases) evaluated. P-value was corrected using
FWE, resulting in p < 0.0031 for significance. As a result, only
the GDS-Energy test was not significantly (p = 0.4329) correlated
to the impaired/healthy memory impairment of subjects, but
significantly (p < 0.001) correlated to the certain/uncertain state
of subjects (Table 3), which means it influences the cases to
be uncertain but did not influence the memory function. For
GDS-Energy test, it asks “Do you feel full of energy?” toward
the subjects, and the proportions that choose “yes” are 80.27%
in certain impaired group, 68.80% in uncertain impaired group,
69.90% in the uncertain healthy group, and 76.44% in the certain
healthy group. Uncertain groups are subjectively significantly less
energetic than certain groups (p < 0.001), both in baseline and
longitudinal studies (Figure 4A). Moreover, the subjects who
were not energetic during the baseline showed more (p < 0.01,
p < 0.05) unstable neuropsychological test results longitudinally
than energetic subjects, including all three tests (Figure 4B).
Additionally, the GDS-Memory score (p < 0.001) representing
the self-assessment of memory capacity had both significant
effects between impaired/healthy and certain/uncertain cases.

Energetic Mental State Mainly Affects
Healthy Uncertain Cases
The influence of the energetic state was also evaluated using the
glucose metabolism of FDG-PET. We applied t-tests between
energetic and non-energetic cases, respectively, on the four
diagnosing groups, and the t-test map view in slices is found in
Supplementary Figure 3, which covers more concrete regions

TABLE 3 | P-value of chi-squared test for GDS single test and two-way ANOVA
for GDS total scores, where impaired/healthy and certain/uncertain are two
factors to be analyzed.

Impaired/Healthy p-value Certain/Uncertain p-value

GDS-satisfy 0.9599 0.1817

GDS-drop <0.001 0.2798

GDS-empty 0.0527 0.9628

GDS-bored 0.0121 0.2560

GDS-spirit 0.1219 0.3865

GDS-afraid 0.4312 0.0720

GDS-happy 0.4199 0.6918

GDS-help <0.001 0.7880

GDS-home 0.3250 0.0254

GDS-memory# <0.001 <0.001

GDS-alive 0.1439 0.0975

GDS-worth 0.0174 0.4279

GDS-energy# 0.4329 <0.001

GDS-hope <0.001 0.0199

GDS-better 0.1050 0.4254

GDS-total# <0.001 0.0187

Detailed questions of GDS are presented in Supplementary Table 1.
#Only these two points were significantly associated with certain/uncertain factors
of all cases, after correcting the p-value threshold to 0.0031 by FWE. GDS, global
deterioration scale.
Bold values were used to highlight the GDS scores that had significant association
with both factors.

(Figure 4C). As a result, only uncertain healthy groups showed
significant difference (p < 0.05; FDR-corrected), and the glucose
metabolism of energetic subjects are stronger in the binary
anterior middle cingulate, the wide range of frontal lobe, and
a small region of the temporoparietal lobe, while weaker in
binary cerebellum regions 8 and 9, which is partly similar to
the significant difference between uncertain group and certain
healthy group presented in Figure 3A.

DISCUSSION

As the results of neuropsychological tests might be conflicting
within the same subject and lead to an uncertain case and
diagnosis, we proposed a 3D-CNN-DL framework to diagnose
memory impairment in uncertain cases using FDG-PET images,
and the corresponding longitudinal study was proved to be
clinically valid between positive and negative diagnoses. Then,
by analyzing the FDG-PET and GDS between groups, we figured
out that a mild-extent AD-related neurodegeneration state is
a potential cause for an impaired sample to be uncertain,
and a non-energetic mental state with a depression-related
metabolism pattern is a potential cause for a healthy sample
to be uncertain.

Neuropsychological tests, such as MMSE, ADAS-Cog, and
CDR, are convenient and effective methods for screening and
diagnosing dementia. These tests contain several questions
for multiple cognitive aspects, including memory, orientation,
attention, and language. Among these, memory impairment
is the most common and vulnerable cognitive aspect during
neurodegenerative diseases such as MCI (Petersen, 2004) and
AD (Perry et al., 2000; Scheltens et al., 2016), so we focused on
the memory aspect in this study. Another reason for choosing
memory is the same test method in MMSE and ADAS-Cog,
which both require subjects to recall given words that were
learned before. By controlling the same method and adding
the comprehensive assessment of CDR, the conflict results
between them may not be blamed on the different designs or
sensitivities of tests, but more on the mental and cognitive
state of the subject being tested. As a result, up to 72.97%
(1,741 out of 2,386) samples do not have consistent results
between tests and are grouped into uncertain cases while
using only three tests results as classification inputs showed
poor diagnose validity, and also cannot reach the diagnosing
capacity that the DL framework has achieved (Supplementary
Table 2). This proved the necessity of data fusion (Zhang
et al., 2020; Wang et al., 2021) between neuropsychological
tests and neuroimages, such as FDG-PET or MRI, to certainly
diagnose AD-related neurodegeneration (McKhann et al., 2011;
Zhang et al., 2018).

Because of these disadvantages of neuropsychological
tests, using the DL algorithm on neuroimages to diagnose
neurodegenerative diseases is getting popular recently, especially
in classifying AD dementia (Suk and Shen, 2013; Suk et al.,
2014, 2015; Liu et al., 2015; Shi et al., 2018). The capability of
3D CNN allows integral input of the whole image information
and extracts features from lower dimension to higher abstract
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FIGURE 4 | (A) Distribution of GDS-energy states. Baseline data include 2,386 cases and longitudinal data include 6,912 cases who completed all three
neuropsychological tests, and the longitudinal uncertain group was not further diagnosed using the DL framework. (B) The SD of longitudinal tests within-subjects,
including three neuropsychological tests, non-energetic subjects showed significant unstable test scores. ***p < 0.001, **p < 0.01, *p < 0.05. (C) The t-test maps
between FDG-PET SUVr of energetic and non-energetic subjects, FDG corrected p < 0.05, respectively, in four groups, and slice views are found in
Supplementary Figure 3. The color bar represents the t value.
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dimension, with no human-designed a priori knowledge like
the definition of ROI. To the best of our knowledge, most
of these studies focused on training and applying the DL
frameworks both on labeled cases (positive or negative pre-
diagnosed by experts), and neglected to exploit the capability
of diagnosing uncertain and difficult cases even for experts.
So, we tried to use the FDG-PET images to diagnose uncertain
memory impairment. To give an evaluation criterion for these
diagnosing results, we studied all the available longitudinal
progress (40 months on average) of 2,386 cases up to April 2020
in the ADNI dataset, which are more than 6,912 cases in the
longitudinal study, then we found that the impaired diagnoses
using the DL framework were significantly worse in longitudinal
memory function decline than the healthy diagnoses using
the DL framework. Especially in the CDR-Memory progress
per month, the increasing slope of uncertain healthy cases
was as flat as certain healthy cases, while the uncertain
impaired cases showed around four times the increasing
speed of healthy cases. This significant evidence proved that
the DL framework could manage to tell apart the impaired
and healthy impairment in uncertain cases and had clinical
validity and application potential. Its clinical potential can be
concluded as a more accurate diagnosis when facing conflicting
neuropsychological test results and ensure less occurrence of
misdiagnosis. Subsequently, its diagnosis for uncertain cases
can reduce the potentially inappropriate medication and plan
a more valid treatment in time, which is valuable for AD
and MCI subjects.

Until present, the causes of conflict test conclusion and
uncertain cases remain unclear. Major viewpoints blamed it on
the different sensitivity or different design of tests (Perneczky
et al., 2006). However, it lacks concrete evidence and specific
research. So, this study gives a concrete explanation and
evidence that both AD-related and depression-related causes can
potentially lead to uncertain cases in different situations.

For AD-related causes, the FDG-PET t-test between groups
with strict significance threshold and the t-SNE of feature
in DL showed that the glucose metabolism intensity is
decreasing progressively by this order of groups: certain
healthy, uncertain healthy, uncertain impaired, and certain
impaired. This evidence proves that the uncertain cases have a
detectable neuropathological basis and shows an intermediate
state between impaired and healthy cases. In other words, the
neurodegenerative progress of an uncertain group is a state
between healthy and diseased. The hypometabolism regions
between certain and uncertain impaired cases are the typically
affected regions of AD: frontal lobe, temporoparietal lobe, limbic
systems such as the hippocampus and subcutaneous nuclei,
which implies that the neurodegenerative extent of this group
is not enough to reach a certain diagnosis but has the same
impaired pattern.

For depression-related causes, we collected the GDS scores of
each sample in the baseline, which contained 15 questions for
different types of depression mental state. The chi-squared test
showed two valuable results. First, the GDS-energy is significantly
different (p < 0.001) in uncertain cases than certain cases
but not different (p = 0.4329) between impaired and healthy

cases. This means a non-energetic mental state is a key factor
that can lead to uncertain cases regardless of the state of
memory impairment. The baseline (Figure 4A) and longitudinal
progress (Figure 4B) between energetic and non-energetic also
verified that it influences the stability of test results. Second,
GDS-memory is the self-assessed memory state of a subject,
which is both significant between two factors of uncertain and
certain cases, and impaired and healthy cases. This significance
between the four groups showed that uncertain cases are not
only caused by mental state but also correlated to clinical
impairment such as memory. Moreover, the hypometabolism
regions between certain and uncertain healthy cases are mainly
binary medial frontal orbital lobe, anterior cingulate, insula,
hippocampus and parahippocampus, with hypermetabolism in
the cerebellum. These regions are not the same as the AD pattern
but belong to a typical depression-related neuro circuit that has
been widely studied (Mayberg et al., 1999, 2000; Phan et al.,
2002; Phillips et al., 2003; Critchley, 2005). Correspondingly,
the FDG-PET t-tests between energetic and non-energetic
subjects in the four groups (Figure 4C) are only significant in
uncertain healthy groups, while regions are mostly similar to this
typical depression-related neuron circuit. This implies that the
uncertainty in the healthy group might be affected by the non-
energetic mental state. Although using different types of data,
this conclusion supported the significant impact of depression
in potential misdiagnoses. This result enlightens AD research
field to focus more on the mental state such as depression (Hejl
et al., 2002; Pier et al., 2012) of mild or suspected subjects, not
only because it may confound the diagnosis, but also it has been
identified as a risk factor for the cognitive decline (Diniz et al.,
2013; Gimson et al., 2018; Marchant et al., 2020).

To conclude the relationship between the two causes,
first, they are not independent or exclusive, but both exist
and interact with each other by neurological basis such as
neurodegeneration. Second, the priority of them varies when
the subjects are healthy or impaired, while a mild-extent AD-
related neurodegenerative progress is potentially the major cause
of uncertain impaired cases, and non-energetic depression-
related mental state is potentially the major cause of uncertain
healthy cases, which could guide clinical practice to deal with
uncertain cases reasonably and effectively. Third, the evidence
of neurodegeneration and mental causes can verify each other,
as proposed above.

Our study had several limitations. First, because we obtained
samples from ADNI as a large multisite dataset and collected
all available data to keep a large sample amount, the multisite
effect of PET scanning and several unbalanced demographical
information cannot be avoided, but we strictly used them
as covariates in statistical tests. Second, although using MRI
for PET preprocessing, because the scanning time interval
between PET and MRI varies, we only chose FDG-PET as an
evaluation of neurodegenerative progress, which might miss
information that other modalities provided. Third, because of
the priority of memory impairment in AD, we only focused on
this aspect among many cognitive aspects, other aspects such as
orientation and language or even total score are also valuable to
be analyzed later.
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CONCLUSION

We proposed the DL framework based on FDG-PET for
diagnosing uncertain cases of memory impairment related to
AD, which was clinically reliable for diagnosing uncertain
cases and proved valid in the corresponding longitudinal
study. As for the cause and evidence of uncertain cases, for
uncertain memory-impaired subjects, the uncertainty is mainly
explained by mild-extent AD-related neurodegeneration. For
uncertain memory-healthy subjects, the uncertainty is mainly
explained by a non-energetic mental state and depression-related
metabolism pattern.
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